On Normalising Radial Basis Function
نویسنده
چکیده
Normalisation of the basis function activations in a radial basis function (RBF) network is a common way of achieving the partition of unity often desired for modelling applications. It results in the basis functions covering the whole of the input space to the same degree. However, normalisa-tion of the basis functions can lead to other eeects which are sometimes less desireable for modelling applications. This paper describes some side eeects of normalisation which fundamentally alter properties of the basis functions, e.g. the shape is no longer uniform, maxima of basis functions can be shifted from their centres, and the basis functions are no longer guaranteed to decrease monotonically as distance from their centre increases { in many cases basis functions can reappear far from the basis function centre. This paper examines how these phenomena occur, and analyses theoretically and experimentally the eeect of normalisation on the least squares solution to the weights problem.
منابع مشابه
Approximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملSide effects of Normalising Radial Basis Function Networks
Normalisation of the basis function activations in a Radial Basis Function (RBF) network is a common way of achieving the partition of unity often desired for modelling applications. It results in the basis functions covering the whole of the input space to the same degree. However, normalisation of the basis functions can lead to other effects which are sometimes less desirable for modelling a...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملA numerical solution of a Kawahara equation by using Multiquadric radial basis function
In this article, we apply the Multiquadric radial basis function (RBF) interpo-lation method for nding the numerical approximation of traveling wave solu-tions of the Kawahara equation. The scheme is based on the Crank-Nicolsonformulation for space derivative. The performance of the method is shown innumerical examples.
متن کاملCollocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model
In this paper, indirect collocation approach based on compactly supported radial basis function (CSRBF) is applied for solving Volterra's population model. The method reduces the solution of this problem to the solution of a system of algebraic equations. Volterra's model is a non-linear integro-differential equation where the integral term represents the effect of toxin. To solve the pr...
متن کامل